Ten Years of Induced Ocean Warming Causes Comprehensive Changes in Marine Benthic Communities
نویسندگان
چکیده
One of the most commonly predicted effects of global ocean warming on marine communities is a poleward shift in the distributional boundaries of species with an associated replacement of cold-water species by warm-water species. However, these types of predictions are imprecise and based largely on broad correlations in uncontrolled studies that examine changes in the distribution or abundances of species in relation to seawater temperature. Our study used an 18-year sampling program in intertidal and subtidal habitats and before–after, control–impact analyses. We show that a 3.58C rise in seawater temperature, induced by the thermal outfall of a power-generating station, over 10 years along 2 km of rocky coastline in California resulted in significant community-wide changes in 150 species of algae and invertebrates relative to adjacent control areas experiencing natural temperatures. Contrary to predictions based on current biogeographic models, there was no trend toward warmer-water species with southern geographic affinities replacing colderwater species with northern affinities. Instead, the communities were greatly altered in apparently cascading responses to changes in abundance of several key taxa, particularly habitat-forming subtidal kelps and intertidal foliose red algae. Many temperature-sensitive algae decreased greatly in abundance, whereas many invertebrate grazers increased. The responses of these benthic communities to ocean warming were mostly unpredicted and strongly coupled to direct effects of temperature on key taxa and indirect effects operating through ecological interactions.
منابع مشابه
Response of seafloor ecosystems to abrupt global climate change.
Anthropogenic climate change is predicted to decrease oceanic oxygen (O2) concentrations, with potentially significant effects on marine ecosystems. Geologically recent episodes of abrupt climatic warming provide opportunities to assess the effects of changing oxygenation on marine communities. Thus far, this knowledge has been largely restricted to investigations using Foraminifera, with littl...
متن کاملResearchonline@jcu Title: Quantifying the Response of Structural Complexity and Community Composition to Environmental Change in Marine Communities Running Head: Measuring Change in Marine Habitat Complexity
Habitat structural complexity is a key factor shaping marine communities. However, accurate methods for quantifying structural complexity underwater are currently lacking. Loss of structural complexity is linked to ecosystem declines in biodiversity and resilience. We developed new methods using underwater stereo-imagery spanning four years (2010-2013) to reconstruct 3D models of coral reef are...
متن کاملConsumers mediate the effects of experimental ocean acidification and warming on primary producers.
It is well known that ocean acidification can have profound impacts on marine organisms. However, we know little about the direct and indirect effects of ocean acidification and also how these effects interact with other features of environmental change such as warming and declining consumer pressure. In this study, we tested whether the presence of consumers (invertebrate mesograzers) influenc...
متن کاملQuantifying the response of structural complexity and community composition to environmental change in marine communities.
Habitat structural complexity is a key factor shaping marine communities. However, accurate methods for quantifying structural complexity underwater are currently lacking. Loss of structural complexity is linked to ecosystem declines in biodiversity and resilience. We developed new methods using underwater stereo-imagery spanning 4 years (2010-2013) to reconstruct 3D models of coral reef areas ...
متن کاملThirty‐Three Years of Ocean Benthic Warming Along the U.S. Northeast Continental Shelf and Slope: Patterns, Drivers, and Ecological Consequences
The U.S. Northeast Continental Shelf is experiencing rapid warming, with potentially profound consequences to marine ecosystems. While satellites document multiple scales of spatial and temporal variability on the surface, our understanding of the status, trends, and drivers of the benthic environmental change remains limited. We interpolated sparse benthic temperature data along the New Englan...
متن کامل